Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
ACS Nano ; 17(23): 23359-23373, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039329

RESUMO

Targeting nanoparticles (NPs) based on the specific binding of ligands with molecular targets provides a promising tool for tissue-selective drug delivery. However, the number of molecular targets on the cell surface is limited, hindering the number of NPs that can bind and, thus, limiting the therapeutic outcome. Although several strategies have been developed to enhance drug delivery, such as enhancing drug loading and circulation time or increasing the enhanced permeability and retention effect of nanocarriers, none have resolved this issue. Herein, we designed a simple method for amplified and targeted drug delivery using two matched NPs. One NP was aptamer-functionalized to specifically bind to target cells, while the other was aptamer-complementary DNA-functionalized to specifically bind to aptamer-NPs. Alternate administration of the two matched NPs enables their continuous accumulation in the disease site despite their limited molecular targets. As a proof of concept, the method was tested in a breast cancer model and significantly enhanced chemotherapy of tumor cells in vitro and in vivo. The potential applications of this method in a brain injury model were also demonstrated. Overall, the study describes a method for amplified targeted drug delivery independent of the target number.


Assuntos
Doxorrubicina , Nanopartículas , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Linhagem Celular Tumoral
2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004490

RESUMO

Dengue virus (DENV) is a major mosquito-borne human pathogen in tropical countries; however, there are currently no targeted antiviral treatments for DENV infection. Compounds 27 and 29 have been reported to be allosteric inhibitors of DENV RdRp with potent inhibitory effects. In this study, the structures of compounds 27 and 29 were optimized using computer-aided drug design (CADD) approaches. Nine novel compounds were synthesized based on rational considerations, including molecular docking scores, free energy of binding to receptor proteins, predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters, structural diversity, and feasibility of synthesis. Subsequently, the anti-DENV activity was assessed. In the cytopathic effect (CPE) assay conducted on BHK-21 cells using the DENV2 NGC strain, both SW-b and SW-d demonstrated comparable or superior activity against DENV2, with IC50 values of 3.58 ± 0.29 µM and 23.94 ± 1.00 µM, respectively, compared to that of compound 27 (IC50 = 19.67 ± 1.12 µM). Importantly, both SW-b and SW-d exhibited low cytotoxicity, with CC50 values of 24.65 µmol and 133.70 µmol, respectively, resulting in selectivity indices of 6.89 and 5.58, respectively. Furthermore, when compared to the positive control compound 3'-dATP (IC50 = 30.09 ± 8.26 µM), SW-b and SW-d displayed superior inhibitory activity in an enzyme inhibitory assay, with IC50 values of 11.54 ± 1.30 µM and 13.54 ± 0.32 µM, respectively. Molecular dynamics (MD) simulations elucidated the mode of action of SW-b and SW-d, highlighting their ability to enhance π-π packing interactions between benzene rings and residue W795 in the S1 fragment, compared to compounds 27 and 29. Although the transacylsulphonamide fragment reduced the interaction between T794 and NH, it augmented the interaction between R729 and T794. In summary, our study underscores the potential of SW-b and SW-d as allosteric inhibitors targeting the DENV NS5 RdRp domain. However, further in vivo studies are warranted to assess their pharmacology and toxicity profiles.

3.
Eur J Med Chem ; 261: 115852, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37801825

RESUMO

The Zika virus (ZIKV) infections remains a global health threat. However, no approved drug for treating ZIKV infection. We previously found TZY12-9, a 5'-amino NI analog, that showed anti-ZIKV activity without chemical phosphorylation. Here, a series of 5'-amino NI analogs were synthesized and evaluated. The compound XSJ2-46 exhibited potent in vitro activity without requiring chemical phosphorylation, favorable pharmacokinetic and acute toxicity profiles. Preliminary mechanisms of anti-ZIKV activity of XSJ2-46 were investigated via a series of ZIKV non-structural protein inhibition assays and host cell RNA-seq. XSJ2-46 acted at the replication stage of viral infection cycle, and exhibited reasonable inhibition of RNA-dependent RNA polymerases (RdRp) with an IC50 value of 8.78 µM, while not affecting MTase. RNA-seq analysis also revealed differential expression genes involved in cytokine and cytokine receptor pathway in ZIKV-infected U87 cells treated with XSJ2-46. Importantly, treatment with XSJ2-46 (10 mg/kg/day) significantly enhanced survival protection (70% survival) in ZIKV-infected ICR mice. Additionally, XSJ2-46 administration resulted in a significant decrease in serum levels of ZIKV viral RNA in the IFNα/ß receptor-deficient (Ifnar-/-) A129 mouse model. Therefore, the remarkable in vitro and in vivo anti-ZIKV activity of compound XSJ2-46 highlights the promising research direction of utilizing the 5'-amino NI structure skeleton for developing antiviral NIs.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico , Antivirais/química , Camundongos Endogâmicos ICR , Replicação Viral
4.
Sci China Life Sci ; 66(10): 2329-2341, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300753

RESUMO

Monkeypox was declared a global health emergency by the World Health Organization, and as of March 2023, 86,000 confirmed cases and 111 deaths across 110 countries have been reported. Its causal agent, monkeypox virus (MPV) belongs to a large family of double-stranded DNA viruses, Orthopoxviridae, that also includes vaccinia virus (VACV) and others. MPV produces two distinct forms of viral particles during its replication cycles: the enveloped viron (EV) that is released via exocytosis, and the mature viron (MV) that is discharged through lysis of host cells. This study was designed to develop multi-valent mRNA vaccines against monkeypox EV and MV surface proteins, and examine their efficacy and mechanism of action. Four mRNA vaccines were produced with different combinations of surface proteins from EV (A35R and B6R), MV (A29L, E8L, H3L and M1R), or EV and MV, and were administered in Balb/c mice to assess their immunogenicity potentials. A dynamic immune response was observed as soon as seven days after initial immunization, while a strong IgG response to all immunogens was detected with ELISA after two vaccinations. The higher number of immunogens contributed to a more robust total IgG response and correlating neutralizing activity against VACV, indicating the additive potential of each immunogen in generating immune response and nullifying VACV infection. Further, the mRNA vaccines elicited an antigen-specific CD4+ T cell response that is biased towards Th1. The mRNA vaccines with different combinations of EV and MV surface antigens protected a mouse model from a lethal dose VACV challenge, with the EV and MV antigens-combined vaccine offering the strongest protection. These findings provide insight into the protective mechanism of multi-valent mRNA vaccines against MPV, and also the foundation for further development of effective and safe mRNA vaccines for enhanced protection against monkeypox virus outbreak.


Assuntos
Mpox , Animais , Camundongos , Antígenos de Superfície , Vaccinia virus/genética , Proteínas de Membrana , Imunidade , Imunoglobulina G , Anticorpos Antivirais
6.
Molecules ; 28(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37175352

RESUMO

Cationic polymeric materials and cell-penetrating peptides (CPPs) were often used as the delivery vectors in the evaluation of nucleic acid therapeutics. 10-23 DNAzyme is a kind of potential antisense therapeutics by catalytic cleavage of the disease-related RNAs. Here, lipofectamine 2000 and Tat peptide were evaluated for their effect on the catalytic activity of 10-23 DNAzyme, with the observed rate constant, thermal stability, CD spectra, and PAGE analysis, with a duplex DNA mimicking DNAzyme-substrate as a control. It was shown that the cationic carriers had a negative effect on the catalytic performance of the 10-23 DNAzyme. Significantly, the destabilizing effect of the cationic carriers on the duplex formation was noteworthy, as a duplex formation is an essential prerequisite in the silencing mechanisms of antisense and RNAi.


Assuntos
Peptídeos Penetradores de Células , DNA Catalítico , DNA Catalítico/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Lipídeos , DNA , Cátions
7.
MedComm (2020) ; 4(1): e206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36699286

RESUMO

Tetrandrine (TET) has been used to treat silicosis in China for decades. The aim of this study was to facilitate rational repurposing of TET against SARS-CoV-2 infection. In this study, we confirmed that TET exhibited antiviral potency against SARS-CoV-2 in the African green monkey kidney (Vero E6), human hepatocarcinoma (Huh7), and human lung adenocarcinoma epithelial (Calu-3) cell lines. TET functioned during the early-entry stage of SARS-CoV-2 and impeded intracellular trafficking of the virus from early endosomes to endolysosomes. An in vivo study that used adenovirus (AdV) 5-human angiotensin-converting enzyme 2 (hACE2)-transduced mice showed that although TET did not reduce pulmonary viral load, it significantly alleviated pathological damage in SARS-CoV-2-infected murine lungs. The systemic preclinical pharmacokinetics were investigated based on in vivo and in vitro models, and the route-dependent biodistribution of TET was explored. TET had a large volume of distribution, which contributed to its high tissue accumulation. Inhaled administration helped TET target the lung and reduced its exposure to other tissues, which mitigated its off-target toxicity. Based on the available human pharmacokinetic data, it appeared feasible to achieve an unbound TET 90% maximal effective concentration (EC90) in human lungs. This study provides insights into the route-dependent pulmonary biodistribution of TET associated with its efficacy.

8.
J Med Chem ; 65(21): 14792-14808, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36254462

RESUMO

Enterovirus D68 (EV-D68) is a nonpolio enterovirus that is mainly transmitted through respiratory routes and poses a potential threat for large-scale spread. EV-D68 infections mostly cause moderate to severe respiratory diseases in children and potentially induce neurological diseases. However, there are no specific antiviral drugs or vaccines against EV-D68. Herein, through virtual screening and rational design, a series of novel quinoline analogues as anti-EV-D68 agents targeting VP1 were identified. Particularly, 19 exhibited potent antiviral activity with an EC50 value ranging from 0.05 to 0.10 µM against various EV-D68 strains and showed inhibition of viral replication verified by Western blot, immunofluorescence, and plaque formation assay. Mechanistic studies indicated that the anti-EV-D68 agents work mainly by interacting with VP1. The acceptable bioavailability of 23.9% in rats and significant metabolic stability in human liver microsome (Clint = 10.8 mL/min/kg, t1/2 = 148 min) indicated that compound 19 with a novel scaffold was worth further investigation.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Quinolinas , Infecções Respiratórias , Criança , Humanos , Ratos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Enterovirus/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico
9.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014481

RESUMO

Zanthoxylum acanthopodium DC. is a widely used traditional medicinal plant to treat fever, flu, stomachache, traumatic injury, and mosquito bite in tropical and subtropical Asia. This study aimed to investigate the antifungal, anti-inflammatory, antiviral, and larvicidal activities of its fruit essential oil. The essential oil sample from China (EOZC) was mainly composed of limonene (29.78%) and ß-myrcene (26.65%), while the sample from Myanmar (EOZM) was dominated by Terpinen-4-ol (43.35%). Both essential oils showed antifungal activity, with 90% minimum inhibitory concentration (MIC90) values ranging from 26.3 to 499 µg/mL. By obviously inhibiting nitric oxide (NO) in RAW 264.7 cells, EOZC (IC50, 16 µg/mL) showed comparable anti-inflammatory activity to the positive control L-NMMA (IC50, 12.2 µg/mL). EOZM showed significant antiviral activity against the dengue virus with an IC50 value of 13 µg/mL. Additionally, both EOZC and EOZM demonstrated dose-dependent larvicidal activity against Aedes albopictus, with LC50 and LC90 values ranging from 45.8 to 144.0 µg/mL. Our results contribute a theoretical foundation for the further application of Zanthoxylum acanthopodium DC. as an antifungal and anti-inflammatory ingredient in the pharmaceutical industry and further indicate that it has the potential to be developed as a new source of natural and eco-friendly medicine for the prevention and treatment of dengue virus.


Assuntos
Aedes , Inseticidas , Óleos Voláteis , Zanthoxylum , Animais , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Antivirais/farmacologia , Inseticidas/farmacologia , Larva , Mianmar , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Zanthoxylum/química
10.
Viruses ; 14(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35746614

RESUMO

Enterovirus infections can cause hand, foot, and mouth disease (HFDM), aseptic meningitis, encephalitis, myocarditis, and acute flaccid myelitis, leading to death of infants and young children. However, no specific antiviral drug is currently available for the treatment of this type of infection. The Unites States and United Kingdom health authorities recently approved a new antiviral drug, molnupiravir, for the treatment of COVID-19. In this study, we reported that molnupiravir (EIDD-2801) and its active form, EIDD-1931, have broad-spectrum anti-enterovirus potential. Our data showed that EIDD-1931 could significantly reduce the production of EV-A71 progeny virus and the expression of EV-A71 viral protein at non-cytotoxic concentrations. The results of the time-of-addition assay suggest that EIDD-1931 acts at the post-entry step, which is in accordance with its antiviral mechanism. The intraperitoneal administration of EIDD-1931 and EIDD-2801 protected 1-day-old ICR suckling mice from lethal EV-A71 challenge by reducing the viral load in various tissues of the infected mice. The pharmacokinetics analysis indicated that the plasma drug concentration overwhelmed the EC50 for enteroviruses, suggesting the clinical potential of molnupiravir against enteroviruses. Thus, molnupiravir along with its active form, EIDD-1931, may be a promising drug candidate against enterovirus infections.


Assuntos
COVID-19 , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Animais , Antígenos Virais/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Pré-Escolar , Citidina/análogos & derivados , Enterovirus/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Humanos , Hidroxilaminas , Camundongos , Camundongos Endogâmicos ICR
11.
Viruses ; 14(6)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35746699

RESUMO

Flaviviruses, represented by Zika and dengue virus (ZIKV and DENV), are widely present around the world and cause various diseases with serious consequences. However, no antiviral drugs have been clinically approved for use against them. Azelnidipine (ALP) is a dihydropyridine calcium channel blocker and has been approved for use as an antihypertensive drug. In the present study, ALP was found to show potent anti-flavivirus activities in vitro and in vivo. ALP effectively prevented the cytopathic effect induced by ZIKV and DENV and inhibited the production of viral RNA and viral protein in a dose-dependent manner. Moreover, treatment with 0.3 mg/kg of ALP protected 88.89% of mice from lethal challenge. Furthermore, using the time-of-drug-addition assay, the enzymatic inhibition assay, the molecular docking, and the surface plasmon resonance assay, we revealed that ALP acted at the replication stage of the viral infection cycle by targeting the viral RNA-dependent RNA polymerase. These findings highlight the potential for the use of ALP as an antiviral agent to combat flavivirus infections.


Assuntos
Dengue , Di-Hidropiridinas , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Ácido Azetidinocarboxílico/análogos & derivados , Dengue/tratamento farmacológico , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Flavivirus/fisiologia , Camundongos , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
12.
Antiviral Res ; 202: 105325, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460703

RESUMO

Epidemics caused by flaviviruses occur globally; however, no antiviral drugs treating flaviviruses infections have yet been developed. Nafamostat (NM) is a protease inhibitor approved for pancreatitis and anti-coagulation. The anti-flavivirus potential of NM has yet to be determined. Here, utilizing in vitro and in vivo infection assays, we present that NM effectively inhibits Zika virus (ZIKV) and other flaviviruses in vitro. NM inhibited the production of ZIKV viral RNA and proteins originating from Asia and African lineage in human-, mouse- and monkey-derived cell lines and the in vivo anti-ZIKV efficacy of NM was verified. Mode-of-action analysis using time-of-drug-addition assay, infectivity inhibition assay, surface plasmon resonance assay, and molecular docking revealed that NM interacted with viral particles and blocked the early stage of infection by targeting the domain III of ZIKV envelope protein. Analysing the anti-flavivirus effects of NM-related compounds suggested that the antiviral effect depended on the unique structure of NM. These findings suggest the potential use of NM as an anti-flavivirus candidate, and a novel drug design approach targeting the flavivirus envelope protein.


Assuntos
Antivirais , Benzamidinas , Flavivirus , Guanidinas , Zika virus , Animais , Antivirais/química , Antivirais/farmacologia , Benzamidinas/química , Benzamidinas/farmacologia , Flavivirus/efeitos dos fármacos , Guanidinas/química , Guanidinas/farmacologia , Haplorrinos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/metabolismo , Zika virus/efeitos dos fármacos
13.
Antiviral Res ; 201: 105296, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367281

RESUMO

Many viruses use the host cell division cycle to facilitate replication. Cyclin-dependent kinases (CDKs) are a group of serine/threonine kinases that play a central role in regulating cell cycle progression. However, the prospect of using CDKs for anti-influenza virus treatment remains to be elucidated. We conducted this study to investigate the potential of the CDK1 inhibitor Ro-3306 in preventing influenza virus infection and to elucidate the underlying mechanism. We showed that Ro-3306, a CDK1 inhibitor, exerts anti-influenza activity both in vitro and in vivo. Proof-of-concept studies revealed that knockdown of host CDK1 might affect the splicing of M2 viral mRNA, leading to the restriction of viral replication. Moreover, Ro-3306 directly bound to viral PB2 protein and inhibited viral RNA replication. Transcriptome analysis further revealed that Ro-3306 treatment inhibited the expression of MAPK-regulated genes, which might also contribute to the antiviral activity of Ro-3306. This study highlighted the multifunctional role of Ro-3306 as a novel anti-influenza virus agent.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Quinolinas/farmacologia , Tiazóis/farmacologia , Antivirais/farmacologia , Proteína Quinase CDC2/farmacologia , Humanos , Influenza Humana/tratamento farmacológico , Proteínas Virais/genética , Replicação Viral
14.
Nat Commun ; 13(1): 2256, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474062

RESUMO

Ebola virus (EBOV), one of the deadliest viruses, is the cause of fatal Ebola virus disease (EVD). The underlying mechanism of viral replication and EBOV-related hemorrhage is not fully understood. Here, we show that EBOV VP35, a cofactor of viral RNA-dependent RNA polymerase, binds human A kinase interacting protein (AKIP1), which consequently activates protein kinase A (PKA) and the PKA-downstream transcription factor CREB1. During EBOV infection, CREB1 is recruited into EBOV ribonucleoprotein complexes in viral inclusion bodies (VIBs) and employed for viral replication. AKIP1 depletion or PKA-CREB1 inhibition dramatically impairs EBOV replication. Meanwhile, the transcription of several coagulation-related genes, including THBD and SERPINB2, is substantially upregulated by VP35-dependent CREB1 activation, which may contribute to EBOV-related hemorrhage. The finding that EBOV VP35 hijacks the host PKA-CREB1 signal axis for viral replication and pathogenesis provides novel potential therapeutic approaches against EVD.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Proteínas Nucleares/metabolismo , Proteínas do Nucleocapsídeo , Proteínas Virais Reguladoras e Acessórias/metabolismo
15.
Adv Sci (Weinh) ; 9(16): e2106075, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315234

RESUMO

Localized scleroderma (LoS) is a rare chronic disease with extensive tissue fibrosis, inflammatory infiltration, microvascular alterations, and epidermal appendage lesions. However, a deeper understanding of the pathogenesis and treatment strategies of LoS is currently limited. In the present work, a proteome map of LoS skin is established, and the pathological features of LoS skin are characterized. Most importantly, a human-induced pluripotent stem cell-derived epithelial and mesenchymal (EM) organoids model in a 3D culture system for LoS therapy is established. According to the findings, the application of EM organoids on scleroderma skin can significantly reduce the degree of skin fibrosis. In particular, EM organoids enhance the activity of epidermal stem cells in the LoS skin and promotes the regeneration of sweat glands and blood vessels. These results highlight the potential application of organoids for promoting the recovery of scleroderma associated phenotypes and skin-associated functions. Furthermore, it can provide a new therapeutic alternative for patients suffering from disfigurement and skin function defects caused by LoS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esclerodermia Localizada , Diferenciação Celular , Fibrose , Humanos , Organoides
16.
Antiviral Res ; 199: 105273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35257725

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus that causes fever, hemorrhage, and multi-organ failure, with an average fatality rate of ∼40% in humans. Currently, there are no available vaccines or drugs for the treatment of Crimean-Congo hemorrhagic fever (CCHF). Favipiravir (T-705), a nucleoside analog, protects against CCHFV infection in animal models. Here, we evaluated the anti-CCHFV efficacy of several nucleoside analogs, including some well-known compounds such as remdesivir (GS-5734), EIDD-1931 and its prodrug molnupiravir (EIDD-2801), as well as a novel T-705-derived compound H44. T-705, H44, and EIDD-1931 inhibited CCHFV infection in vitro while GS-5734 had no inhibitory effect. All three nucleoside analogs functioned at the "post-entry" stage of virus infection. However, EIDD-2801 failed to protect type I interferon receptor knockout (IFNAR)-/- mice from CCHFV infection. H44, similar to T-705, conferred 100% protection to IFNAR-/- mice against lethal CCHFV challenge, even with delayed administration. This study provided in vitro and in vivo data regarding the anti-CCHFV efficacy of different nucleosides and identified a novel compound, H44, as a promising drug candidate for the treatment of CCHFV infection in vivo.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Modelos Animais de Doenças , Febre Hemorrágica da Crimeia/tratamento farmacológico , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico
18.
Bioorg Med Chem ; 52: 116515, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34839161

RESUMO

Hierarchical virtual screening combined with ADME prediction and cluster analysis methods were used to identify influenza virus PB2 inhibitors with high activity, good druggability properties, and diverse structures. The 200,000 molecules in the ChemDiv core library were narrowed down to a final set of 97 molecules, of which six compounds were found to rescue cells from both H1N1 and H3N2 virus-induced CPE with EC50 values ranging from 5.81 µM to 42.77 µM, and could bind to the PB2 CBD of H1N1, with Kd values of 0.11 µM to 6.4 µM. The six compounds have novel structures and low molecular weight and are, thus, suitable serve as lead compounds for development as PB2 inhibitors. A receptor-based pharmacophore model was successfully constructed using key amino acid residues for the binding of inhibitors to PB2, provided by the MD simulations. This pharmacophore model suggested that to improve the activity of our active compounds, we should mainly focus on optimizing their existing structures with the aim of increasing their adaptability to the binding site, rather than adding chemical fragments to increase their binding to adjacent sites. This pharmacophore construction method facilitates the creation of a reasonable pharmacophore model without the need to fully understand the structure-activity relationships, and our descriptions provide a useful reference for similar research.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Simulação de Dinâmica Molecular , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/química , Pirimidinas/química , Pirróis/química , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
19.
Eur J Med Chem ; 226: 113852, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34560428

RESUMO

A series of phosphoamidate derivatives of nucleoside 2'-acetylene-7-deaza-adenosine (NITD008) were synthesized and evaluated for their in vitro antiviral activities against the enteroviruses EV71 and EV-D68. The phosphoamidate (15f) containing a hexyl ester of l-alanine exhibited the most promising activity against EV71 (IC50 = 0.13 ± 0.08 µM) and was 4-times more potent than NITD008. Meanwhile, the derivative containing a cyclohexyl ester of l-alanine (15l) exhibited the most potent activity with high selectivity index against both EV71 (IC50 = 0.19 ± 0.27 µM, SI = 117.00) and EV-D68 (IC50 = 0.17 ± 0.16 µM, SI = 130.76), which were both higher than that of NITD008. The results indicated that the phosphoamidate 15l was the most promising candidate for further development as antiviral agents for the treatment of both EV71 and EV-D68 infection.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Desenho de Fármacos , Infecções por Enterovirus/tratamento farmacológico , Enterovirus/efeitos dos fármacos , Adenosina/síntese química , Adenosina/química , Adenosina/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Infecções por Enterovirus/virologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA